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 Autonomous Logistics Operations Family of  

Tools

◦ Integration of  GIS and OR to explore logistical 

problems

 Emphasis on unmanned vehicles

 Emphasis on USMC research needs

◦ Platform Mix Problem

This problem asks, “How does an organization 

efficiently allocate the mixed set of  autonomous 

logistics systems needed to support distributed 

operations in the future?”

◦ More broadly: A toolset for helping to model what a 

viable military logistics operation supported by 

unmanned vehicles looks like.



 Given:

◦ Set of  nodes demanding resupply – quantity by type of  supply

◦ Set of  nodes holding inventory – quantity by type of  supply

◦ Set of  manned and unmanned resupply vehicles with different speeds, 

ranges, carrying capacities, and ability to visit specific nodes

 Do:

◦ Meet all demand (to the extent that inventory supports this)

 Objectives:

◦ Minimize time to complete deliveries, prioritize deliveries, minimize risk to 

pilots, minimize resource usage

 Given solutions with different vehicle mixes under different 

conditions, what mixes produce the most desireable solutions?
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 The MCWL scenario is based on the 

United States Marine Corps (USMC) 

Installations and Logistics (I&L) 

Command’s Unmanned Logistics Systems 

(ULS) 2016 wargame

◦ The wargame was conducted at the unclassified 

level with a notional scenario set in 2025 and 

consisted of  two vignette-based moves (Move I 

and Move II)

 This scenario focuses on logistics Classes 

I (food and water), III (fuel), and V 

(ammunition)
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Name
Speed 

(nm/hr)

Capacity 

(lbs)
Range (nm)

Acquisition

Cost

Cost Per 

Hour

Cost Per 

Nautical Mile
Prob of Fail Crew Mode

S-ULS 32 50 13 90000 100 3 0.15 0 8

M-ULS 64 500 54 650000 300 5 0.1 0 8

L-ULS 230 5000 350 7500000 1550 8 0.075 0 8

MV-22B 248 20000 428 72614579 11000 44 0.025 3 8

CH-53K 156 27000 110 92796000 10000 64 0.025 4 8

MTVR 52 30000 260 195271 4000 77 0.05 3 4

Figure Platform Autonomy

S-ULS Unmanned

M-ULS Unmanned

L-ULS Unmanned

MV-22B Manned

CH-53K Manned

MTVR Manned

Node Name Platform

1 LSA
1 (S-ULS)
6 (M-ULS)
12 (MTVR)

4 Lima Co 2 (S-ULS)

6 India Co 3 (S-ULS)

10 LX(R) 1 (L-ULS)

11 T-AKE 1 (L-ULS)

12 LHD
3 (MV-22B)
2 (CH-53K)

Optimal SolutionPlatformsFacilities MapSupplies and Demands

▶Unmanned and manned 

logistics vehicles are 

assigned based on the 

MCWL Move 1 Scenario

▶Specifications and 

characteristics of  each 

platform are listed below
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Name
Speed 

(nm/hr)

Capacity 

(lbs)

Range 

(nm)

Acquisition

Cost

Cost Per 

Hour

Cost Per 

Nautical Mile
Prob of Fail Crew Mode Class

XS-ULS 32 25 13 25000 40 1 0.15 0 Air S

S-ULS 32 50 13 90000 100 3 0.15 0 Air S

M-ULS 64 500 54 650000 300 5 0.1 0 Air M

L-ULS 230 5000 350 7500000 1550 8 0.075 0 Air L

MV-22B 248 20000 428 72614579 11000 44 0.025 3 Air L

CH-53K 156 27000 110 92796000 10000 64 0.025 4 Air L

G-ULS 15 15 260 20000 40 3 0.05 0 Land S

MTVR 52 30000 260 195271 4000 77 0.05 3 Land M

 Model unmanned logistics viability based on 2016 wargame

◦ Many “small” UAVs

 Much larger and more detailed than all previous scenarios:

◦ 55 Facilities (vs. 14): Company, 1st 2nd Platoon, 1st 2nd Squad, Hives

◦ 67 Vehicles (vs. 31): added XS-ULS and G-ULS

◦ 7 Commodities (vs. 4): added Ammo 2, Construction, Rations

 VASTLY larger optimization problem



 The Swarm scenario with our existing 

formulation was intractable

◦ Code refactoring for performance

◦ Revising the formulation

◦ Changing the pre-processing of  problem

 We are just beginning to consider heuristic 

solution procedures

◦ Won't guarantee an optimal solution

◦ Should give a good solution to larger scenarios like 

Swarm

◦ We knew the day would come where we would need 

to develop these, and it was Swarm that brought us 

to the bound of  tractability





 Generate Pareto Trade-Off  

curves for each scenario

◦ Solve over a range of  mixes

◦ Compare performance to cost

 What does the Pareto Trade-

off  offer?

◦ Ability to visually examine 

which mixes in a scenario are 

non-dominated

◦ Allow to make decisions 

amongst non-dominated 

solutions

 Look for “elbows” in the graph

12



 Which variable values (platform sizes) are driving the change?
◦ Logistic regression

◦ A negative value of  the coefficient means that the presence of  the component in the 

context of  the full model is associated with a smaller likelihood of  being on the 

Pareto Frontier

◦ S1, S2, L1, L2 platform sizes are strongly significant in lowering the 

likelihood of  being on the Pareto Frontier

 Consistent with descriptive stats and other findings
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Model parameters (Variable Non-Dominated):

Source Value Standard error Wald Chi-Square Pr > Chi²Wald Lower bound (95%)Wald Upper bound (95%)Odds ratio

Intercept 1.227 0.594 4.266 0.039 0.063 2.391

Small-S0 0.000 0.000

Small-S1 -2.171 0.646 11.315 0.001 -3.437 -0.906 0.114

Small-S2 -2.448 0.686 12.724 0.000 -3.793 -1.103 0.086

Medium-M0 0.000 0.000

Medium-M1 0.000 0.578 0.000 1.000 -1.132 1.132 1.000

Medium-M2 -1.018 0.660 2.375 0.123 -2.312 0.276 0.361

Large-L0 0.000 0.000

Large-L1 -2.212 0.636 12.088 0.001 -3.459 -0.965 0.109

Large-L2 -2.822 0.740 14.557 0.000 -4.271 -1.372 0.060





 ALOFT provides a set of  custom tools designed to be 

run from ArcGIS

◦ Users can set up their data and model input in ArcGIS

◦ Users can view output in ArcGIS

◦ Minimal to no need for users to interact with other software

 Integrated with a linear programming solver backend

◦ Solvers are specialty applications designed to solve 

computationally complex optimization problems

◦ ALOFT built with a Gurobi backend, a commercial solver ($$$) 

 Compatible with other solvers (i.e. CPLEX, COIN-OR)

◦ Integration via PuLP (Python for Linear Programming | 

https://github.com/coin-or/pulp) 
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https://github.com/coin-or/pulp






 Ships and unit locations are treated as nodes in a time/space network

 Nodes either hold stock or demand resupply

 Nodes have different risk of  loss for vehicles visiting at the node

 Vehicles (manned or unmanned) carry cargo between nodes, picking up 

shipments and making deliveries to meet demand in supply classes

 Vehicles come in types - with different speed, capacity, class, and range

 Time advances in discrete time steps (size chosen by user)

 Must meet all demand by a given time deadline

 Multiple Objectives - in priority order:

◦ Minimize discounted, prioritized unmet demand

◦ Minimize risk exposure of  manned aircraft

◦ Minimize discounted operating costs

Output: optimal multi-sortie resupply plan
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