

Unmanned Vehicle Logistics Modeling: Results and Integration for Autonomous Logistics Operations Family of Tools (ALOFT)

Office of Naval Research Grant # N00014-18-1-2094

University of Alabama - Laboratory for Location Science

http://locationscience.ua.edu

Innovative Decisions, Inc

George Mason University

Team

- PI: Kevin M. Curtin, PhD. University of Alabama
- Fred Woodaman, PhD., Innovative Decisions Inc. (IDI)
- Mike Resig, GRA George Mason University, IDI
- Current Team Members
 - Matt Rice, PhD George Mason University
 - JK Robinson George Mason University
 - Daniel Turner University of Alabama
 - Megan Rondinelli University of Alabama
- Former Team Members
 - Jin Lee
 - Alec Barker
 - Diana (Pat) Guillen-Piazza
 - Mike Cosgrove

The ALOFT Project

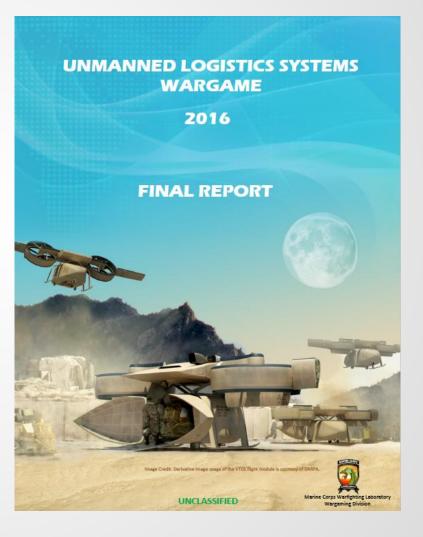
- Autonomous Logistics Operations Family of Tools
 - Integration of GIS and OR to explore logistical problems
- Emphasis on unmanned vehicles
- Emphasis on USMC research needs
 - Platform Mix Problem

This problem asks, "How does an organization efficiently allocate the mixed set of autonomous logistics systems needed to support distributed operations in the future?"

 More broadly: A toolset for helping to model what a viable military logistics operation supported by unmanned vehicles looks like.

Problem

- Given:
 - Set of nodes demanding resupply quantity by type of supply
 - Set of nodes holding inventory quantity by type of supply
 - Set of manned and unmanned resupply vehicles with different speeds, ranges, carrying capacities, and ability to visit specific nodes
- Do:
 - Meet all demand (to the extent that inventory supports this)
- Objectives:
 - Minimize time to complete deliveries, prioritize deliveries, minimize risk to pilots, minimize resource usage
- Given solutions with different vehicle mixes under different conditions, what mixes produce the most desireable solutions?



Example Scenarios

Marine Corps Warfighting Laboratory (MCWL) Scenario

- The MCWL scenario is based on the United States Marine Corps (USMC) Installations and Logistics (I&L) Command's Unmanned Logistics Systems (ULS) 2016 wargame
 - The wargame was conducted at the unclassified level with a notional scenario set in 2025 and consisted of two vignette-based moves (Move I and Move II)
- This scenario focuses on logistics Classes I (food and water), III (fuel), and V (ammunition)

MCWL Scenario – Platforms

- Unmanned and manned logistics vehicles are assigned based on the MCWL Move 1 Scenario
 Specifications and
- characteristics of each platform are listed below

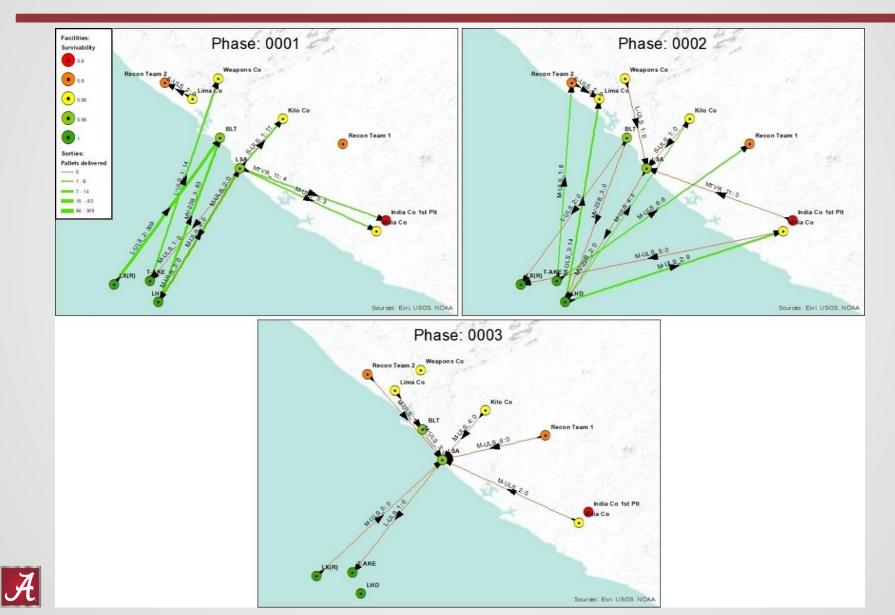
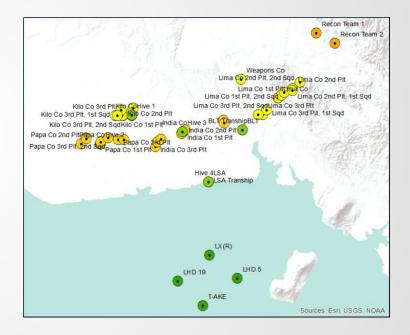

Node	Name	Platform	F
1	LSA	1 (S–ULS) 6 (M–ULS) 12 (MTVR)	-
4	Lima Co	2 (S-ULS)	-
6	India Co	3 (S-ULS)	
10	LX(R)	1 (L–ULS)	
11	T-AKE	1 (L–ULS)	
12	LHD	3 (MV–22B) 2 (CH–53K)	

Figure	Platform	Autonomy
	S-ULS	Unmanned
	M-ULS	Unmanned
	L-ULS	Unmanned
Tert	MV-22B	Manned
	CH-53K	Manned
	MTVR	Manned

Name	Speed (nm/hr)	Capacity (lbs)	Range (nm)	Acquisition Cost	Cost Per Hour	Cost Per Nautical Mile	Prob of Fail	Crew	Mode
S-ULS	32	50	13	90000	100	3	0.15	0	8
M-ULS	64	500	54	650000	300	5	0.1	0	8
L-ULS	230	5000	350	7500000	1550	8	0.075	0	8
MV-22B	248	20000	428	72614579	11000	44	0.025	3	8
CH-53K	156	27000	110	92796000	10000	64	0.025	4	8
MTVR	52	30000	260	195271	4000	77	0.05	3	4

MCWL Maps

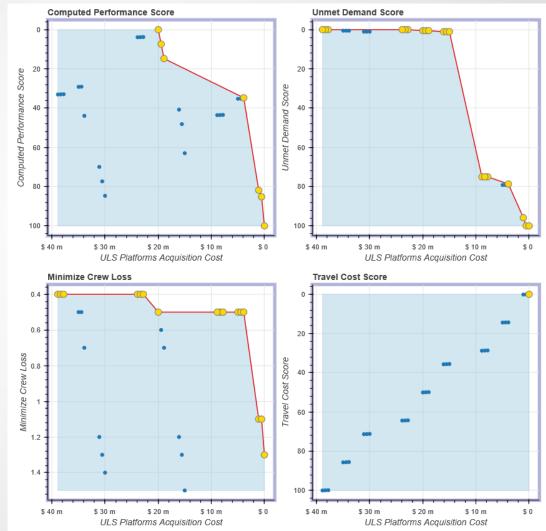
"Swarm" Scenario


- Model unmanned logistics viability based on 2016 wargame
 - Many "small" UAVs
- Much larger and more detailed than all previous scenarios:
 - 55 Facilities (vs. 14): Company, 1st 2nd Platoon, 1st 2nd Squad, Hives
 - 67 Vehicles (vs. 31): added XS-ULS and G-ULS
 - 7 Commodities (vs. 4): added Ammo 2, Construction, Rations
- VASTLY larger optimization problem

Name	Speed (nm/hr)	Capacity (Ibs)	Range (nm)	Acquisition Cost	Cost Per Hour	Cost Per Nautical Mile	Prob of Fail	Crew	Mode	Class
XS-ULS	32	25	13	25000	40	1	0.15	0	Air	S
S-ULS	32	50	13	90000	100	3	0.15	0	Air	S
M-ULS	64	500	54	650000	300	5	0.1	0	Air	М
L-ULS	230	5000	350	7500000	1550	8	0.075	0	Air	L
MV-22B	248	20000	428	72614579	11000	44	0.025	3	Air	L
CH-53K	156	27000	110	92796000	10000	64	0.025	4	Air	L
G-ULS	15	15	260	20000	40	3	0.05	0	Land	S
MTVR	52	30000	260	195271	4000	77	0.05	3	Land	М

Swarm Scenario Problems/Approaches

- The Swarm scenario with our existing formulation was intractable
 - Code refactoring for performance
 - Revising the formulation
 - Changing the pre-processing of problem
- We are just beginning to consider heuristic solution procedures
 - Won't guarantee an optimal solution
 - Should give a good solution to larger scenarios like Swarm
 - We knew the day would come where we would need to develop these, and it was Swarm that brought us to the bound of tractability



Platform Mix Analysis

Platform Mix Analysis

- Generate Pareto Trade-Off curves for each scenario
 - Solve over a range of mixes
 - Compare performance to cost
- What does the Pareto Tradeoff offer?
 - Ability to visually examine which mixes in a scenario are non-dominated
 - Allow to make decisions amongst non-dominated solutions
 - Look for "elbows" in the graph

Platform Mix Analysis Contd.

- Which variable values (platform sizes) are driving the change?
 - Logistic regression
 - A negative value of the coefficient means that the presence of the component in the context of the full model is associated with a smaller likelihood of being on the Pareto Frontier
 - S1, S2, L1, L2 platform sizes are strongly significant in lowering the likelihood of being on the Pareto Frontier
 - Consistent with descriptive stats and other findings

Model parame	ters (Variabl	e Non-Dominate					
Source	Value	Standard error	Wald Chi-Square	Pr > Chi²	Lower bound	Upper bound (Odds ratio
Intercept	1.227	0.594	4.266	0.039	0.063	2.391	
Small-S0	0.000	0.000					
Small-S1	-2.171	0.646	11.315	0.001	-3.437	-0.906	0.114
Small-S2	-2.448	0.686	12.724	0.000	-3.793	-1.103	0.086
Medium-M0	0.000	0.000					
Medium-M1	0.000	0.578	0.000	1.000	-1.132	1.132	1.000
Medium-M2	-1.018	0.660	2.375	0.123	-2.312	0.276	0.361
Large-LO	0.000	0.000					
Large-L1	-2.212	0.636	12.088	0.001	-3.459	-0.965	0.109
Large-L2	-2.822	0.740	14.557	0.000	-4.271	-1.372	0.060

ALOFT Application Development

Software Platform/Integration

- ALOFT provides a set of custom tools designed to be run from ArcGIS
 - Users can set up their data and model input in ArcGIS
 - Users can view output in ArcGIS
 - Minimal to no need for users to interact with other software
- Integrated with a linear programming solver backend
 - Solvers are specialty applications designed to solve computationally complex optimization problems
 - ALOFT built with a Gurobi backend, a commercial solver (\$\$\$)
 - Compatible with other solvers (i.e. CPLEX, COIN-OR)
 - Integration via PuLP (Python for Linear Programming | <u>https://github.com/coin-or/pulp</u>)

ArcGIS User Interface

A

Load Excel Scenario Data	- 🗆 X	Query and Feature Builder	- 🗆 X
Scenario Geodatabase	Load Excel Scenario Data This tool loads all necessary scenario data from data tables into the proper Geodatabase format for solving.	Working Geodatabase Resupply Plan Queries List Platform Assignments Output query table Name Output Dataset (Needed if creating Features) (optional)	Query and Feature Builder Perform queries on Geodatabase tables and create corresponding point or line features. Test
Resupply Plan Name Max Phases ALO form	Tool Help - C X Itiple Objective rmulation ol_Weighted a tool performs the DFT Multiple Objective mulation and plots the ults to a Geodatabase S M	Create Points (optional) Create Lines (optional) Overwrite output (optional) Features only / temporary Query (optional) OK Cancel Environments <<< Hide Help Multiple Objective Formulation Tool	Tool Help
MSD Weight (optional) MInimize Crew Loss (optional) MCL Weight (optional) MICL Weight (optional) MTC Weight (optional) Covenwrite result tables? (optional) Create Output Result Features (optional) Output Feature Dataset (optional)	ALC Res May	OFT Dbs Supply Plan Name Supply Plan Name This ALOU form resul Overwrite result tables? (optional) Create Output Result Features (optional) Itput Feature Dataset (optional)	tiple Objective mulation Tool tool performs the FT Multiple Objective ulation and plots the ts to a Geodatabase
OK Cancel Environments << Hide Help 1	Tool Help	OK Cancel Environments << Hide Help T	ool Help

Questions?

Formulation Overview

- Ships and unit locations are treated as nodes in a time/space network
 Nodes either hold stock or demand resupply
- Nodes have different risk of loss for vehicles visiting at the node
- Vehicles (manned or unmanned) carry cargo between nodes, picking up shipments and making deliveries to meet demand in supply classes
- Vehicles come in types with different speed, capacity, class, and range
- Time advances in discrete time steps (size chosen by user)
- Must meet all demand by a given time deadline
- Multiple Objectives in priority order:
 - Minimize discounted, prioritized unmet demand
 - Minimize risk exposure of manned aircraft
 - Minimize discounted operating costs

Output: optimal multi-sortie resupply plan

Obj 1. Minimize discounted, prioritized unmet demand $Min z = \sum_{t} discount_{t} \sum_{n} \sum_{i} utility_{n,i}SHORTED_{n,i,t}$ **Obj 2.** Minimize crew risk

$$\begin{aligned} Min \ z &= \sum_{(t,t') \in timeArcs} \sum_{(n,n') \in nodeArcs} \sum_{v} crew_v nodeRisk_{v,n'} link_{v,n,n',t,t} \\ \textbf{Obj 3. Minimize discounted, operating costs} \end{aligned}$$

 $\textit{Min } z = \sum_{(t,t') \in \textit{timeArcs}} \textit{discount}_{t'} \sum_{(n,n') \in \textit{nodeArcs}} \sum_{v} \textit{operatingCostPerDistanceUnit}_v \textit{ranges}_{n,n'} \textit{link}_{v,n,n',t,t'} \textit{timeArcs}$

